Relacionado con la gametognesis en mamferos. Este tutorial, corresponde a. Unidad I. Cerrar sugerencias Buscar Buscar. Saltar el carrusel. Carrusel anterior. Carrusel siguiente. Explora Audiolibros. Explora Revistas. Explora Podcasts Todos los podcasts.
Dificultad Principiante Intermedio Avanzado. Explora Documentos. Cargado por Joe. Compartir este documento Compartir o incrustar documentos Opciones para compartir Compartir en Facebook, abre una nueva ventana Facebook. Denunciar este documento. Marcar por contenido inapropiado. Descargar ahora. Carrusel anterior Carrusel siguiente. Buscar dentro del documento. Alfonso Moxica. Patty Cavero. Jenniifer Velez. Erika Tacunan. Anaitz BeHappy. Alexis Ch Caman.
Ulises Humberto Acevedo. Andres Gonzalez De Vivero. Carlos Cadena. Luis Antonio Juarez Zapeta. Lex M. Eve Franco. Rosario Abelleira castro. Ricardo Najera. Sofi Amarilla. Sequin Daisy. Carrasco Yalan. Emmanuel Rojas M.
Andrea Paola Martinez Leal. Popular en Reproduction. Yesely bastidas. Club-Sportivo Colon. Chely Torres. Gametogenesis is the production of haploid sex cells in humans, ovum and spermatozoa that each carry one-half the genetic compliment of the parents from the germ cell line of each parent.
The production of ovum is termed oogenesis and the production of spermatozoa is called spermatogenesis. Both oogenesis and spermatogenesis provide a mechanism through which genetic information may be passed to offspring. The fusion of spermatozoa and ova during fertilization results in a zygote with a fully restored diploid genome. The production of male and female gametes a highly complex and coordinated sequence of a mitotic division, two meiotic divisions, cytoplasmic apportionment divisions and cellular differentiation.
In eukaryotic organisms the gametes are derived from primordial germ cells, which enter the gonads during early development. During embryogenesis, the primordial germ cells are determined early in development by the presence of a cytoplasmic component termed germ plasm.
Once germ cells are determined they follow a different maturation and, of course, genetic function, than do the remaining somatic cells of the body.
Primordial germ cells are the stem cells that, via mitosis , supply both spermatogonia and oogonia. In humans, spermatogenesis starts with a diploid 2N spermatogonium that carries the full genetic compliment of 46 chromosomes 22 autosomal pairs, one X and one Y sex chromosomes.
The spermatogonium represents the germ cell line from which all sperm cells are derived. Sequentially, the process of spermatogenesis via mitosis produces a primary spermatocyte that is also diploid 2N and then via meiosis , two secondary spermatocytes that are haploid N.
The haploid secondary spermatocytes carry 22 autosomes and either an X or a Y sex chromosome. The secondary spermatocytes each undergo a second meiotic division to form a total of four haploid spermatids. Subsequently, nurtured by surrounding somatic cells, through the process of cellular differentiation the four spermatids produce 4 sperm cells capable of motility and fertilization. In human females the germ cell line is represented by the diploid 2N oogonium that carries the full female genetic compliment of 22 autosomal pairs and two X chromosomes.
Mitotic division yields a diploid primary oocyte. Meiotic divisions then produce one female gamete—the ovum. In humans, the first meiotic division is suspended in the diplonema stage during embryonic development. Meiosis resumes, one ovum at a time following puberty and during the ovulatory period of the menstrual cycle. Maturation proceeds with the production of haploid N secondary oocytes with 22 autosomal chromosomes and an X sex chromosome the sex chromosome must be an X chromosome because normal human females carry two X chromosomes and no Y chromosomes.
Also formed is a haploid polar body that is nearly devoid of cytoplasmic contents. This is a fundamental difference between male and female Gametogenesis. In males, there is a nearly equal divison of cytoplasm to the gametes, in females the cytoplasmic contents are preserved for the eventual "egg" or ovum.
Extraneous genetic material is removed via polar bodies. Another meiotic division results in the production of an ootid and yet another polar body the eventual number of polar vies associated with an ovum may equal as many as three if the first sloughed off polar body undergoes a subsequent division.
0コメント